Monitoring River Basin Development and Variation in Water Resources in Transboundary Imjin River in North and South Korea Using Remote Sensing

Author:

Kim DonghwanORCID,Lee Hyongki,Jung Hahn ChulORCID,Hwang Euiho,Hossain Faisal,Bonnema Matthew,Kang Do-Hyuk,Getirana AugustoORCID

Abstract

This paper presents methods of monitoring river basin development and water variability for the transboundary river in North and South Korea. River basin development, such as dams and water infrastructure in transboundary rivers, can be a potential factor of tensions between upstream and downstream countries since dams constructed upstream can adversely affect downstream riparians. However, because most of the information related to North Korea has been limited to the public, the information about dams constructed and their locations were inaccurate in many previous studies. In addition, water resources in transboundary rivers can be exploited as a political tool. Specifically, due to the unexpected water release from the Hwanggang Dam, upstream of the transboundary Imjin River in North and South Korea, six South Koreans died on 6 September 2009. The Imjin River can be used as a political tool by North Korea, and seven events were reported as water conflicts in the Imjin River from 2001 to 2016. In this paper, firstly, we have updated the information about the dams constructed over the Imjin River in North Korea using multi-temporal images with a high spatial resolution (15–30 cm) obtained from Google Earth. Secondly, we analyzed inter- and intra-water variability over the Hwanggang Reservoir using open-source images obtained from the Global Surface Water Explorer. We found a considerable change in water surface variability before and after 2008, which might result from the construction of the Hwanggang Dam. Thirdly, in order to further investigate intra-annual water variability, we present a method monitoring water storage changes of the Hwanggang Reservoir using the area-elevation curve (AEC), which was derived from multi-sensor Synthetic Aperture Radar (SAR) images (Sentinel-1A and -1B) and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). Since many previous studies for estimating water storage change have depended on satellite altimetry dataset and optical images for deriving AEC, the method adopted in this study is the only application for such inaccessible areas since no altimetry ground track exists for the Hwanggang Reservoir and because clouds can block the study area for wet seasons. Moreover, this study has newly proven that unexpected water release can occur in dry seasons because the water storage in the Hwanggang Reservoir can be high enough to conduct a release that can be used as a geopolitical tool. Using our method, potential risks can be mitigated, not in response to a water release, but based on pre-event water storage changes in the Hwanggang Reservoir.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3