Optimizing Feature Selection of Individual Crop Types for Improved Crop Mapping

Author:

Yin LeikunORCID,You Nanshan,Zhang Geli,Huang JianxiORCID,Dong JinweiORCID

Abstract

Accurate crop planting area information is of significance for understanding regional food security and agricultural development planning. While increasing numbers of medium resolution satellite imagery and improved classification algorithms have been used for crop mapping, limited efforts have been made in feature selection, despite its vital impacts on crop classification. Furthermore, different crop types have their unique spectral and phenology characteristics; however, the different features of individual crop types have not been well understood and considered in previous studies of crop mapping. Here, we examined an optimized strategy to integrate specific features of individual crop types for mapping an improved crop type layer in the Sanjiang Plain, a new food bowl in China, by using all Sentinel-2 time series images in 2018. First, an automatic spectro-temporal feature selection (ASTFS) method was used to obtain optimal features for individual crops (rice, corn, and soybean), including sorting all features by the global separability indices for each crop and removing redundant features by accuracy changes when adding new features. Second, the ASTFS-based optimized feature sets for individual crops were used to produce three crop probability maps with the Random Forest classifier. Third, the probability maps were then composited into the final crop layer by considering the probability of each crop at every pixel. The resultant crop layer showed an improved accuracy (overall accuracy = 93.94%, Kappa coefficient = 0.92) than the other classifications without such a feature optimizing process. Our results indicate the potential of the ASTFS method for improving regional crop mapping.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3