Spatial Non-Uniformity of Surface Temperature of the Dead Sea and Adjacent Land Areas

Author:

Kishcha PavelORCID,Starobinets Boris,Pinker Rachel T.,Kunin Pavel,Alpert Pinhas

Abstract

Pronounced spatial non-uniformity has been obtained of daytime sea surface temperature (SST) of the Dead Sea and of land surface temperature (LST) over areas adjacent to the Dead Sea. This non-uniformity was observed in the summer months, under uniform solar radiation. Our findings are based on Moderate Resolution Imaging Spectroradiometer (MODIS) data (2002–2016) on board the Terra and Aqua satellites. MODIS data showed that, on average for the 15-year study period, daytime SST over the eastern part of the lake (Te) exceeded by 5 °C that over the western part (Tw). This SST non-uniformity (observed in the absence of surface heat flow from land to sea at the eastern side) was accompanied by spatial non-uniform distribution of land surface temperature (LST) over areas adjacent to the Dead Sea. Specifically, LST over areas adjacent to the eastern side exceeded by 10 °C that over areas adjacent to the western side. Our findings of spatial non-uniformity of SST/LST based on MODIS data were supported by Meteosat Second Generation LST records. Regional atmospheric warming led to a decrease in spatial non-uniformity of SST during the study period. Temperature difference between Te and Tw steadily decreased at the rate of 0.32 °C decade−1, based on MODIS/Terra data, and 0.54 °C decade−1, based on MODIS/Aqua data. Our simulations of monthly skin temperature distribution over the Dead Sea by the Weather Forecast and Research (WRF) model contradict satellite observations. The application to modeling of the observed SST/LST spatial non-uniformity will advance our knowledge of atmospheric dynamics over hypersaline lakes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3