Detecting Forest Disturbance and Recovery in Primorsky Krai, Russia, Using Annual Landsat Time Series and Multi–Source Land Cover Products

Author:

Hu Yang,Hu YunfengORCID

Abstract

The spatial distribution and dynamic changes of the forests in Primorsky Krai, Russia, are of great significance for regional ecological security and sustainable economic and societal development. With the support of the Google Earth Engine cloud computing platform, we first synthesized yearly Landsat surface reflectance images of the best quality of the research area and then used the random forest method to calculate the forest classification probability of the study area year by year from 1998 to 2015. Furthermore, we used a time–series segmentation algorithm to perform temporal trajectory segmentation for forest classification probability estimation, and determined the spatial and temporal distribution characteristics and change laws of the forest. We extended the existing algorithms and parameters of forest classification probability trajectory analysis, achieving a high overall accuracy (86.2%) in forest change detection in the study area. The extended method can accurately capture the time node information of the changes. In the present research we observed: (1) that from 1998 to 2015, the forest area of the whole district showed a net loss state, with a loss area of 0.56 × 106 ha, of which the cumulative forest disturbance area reached 1.12 × 106 ha, and the cumulative forest recovery area reached 0.55 × 106 ha; and (2) that more than 90% of the forest change occurred in areas with a slope of less than 18°, at a distance of less than 20 km from settlements, and at a distance of less than 10 km from roads. The forest disturbance monitoring results are consistent with the changes in official statistical results over time, but there was a 20% overestimation. The technical method we extended in this study can be used as a reference for large–scale and high–precision dynamic monitoring of the forests in Russia’s Far East and other regions of the world; it also provides a basis for estimating illegal timber harvesting and determining the appropriate amount of forest harvested.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3