Affiliation:
1. Earth and Atmospheric Science Department, Saint Louis University, Saint Louis, MO 63103, USA
Abstract
The Horn of Africa has sensitive, arid ecosystems, with its vegetation commonly distressed by factors such as climate change, population increase, unstable water resources, and rarely enforced land use management practices. These factors make countries such as Djibouti highly variable locations for the growth of vegetation and agricultural products, and these countries are becoming more vulnerable to food insecurity as the climate warms. The rapid growth of satellite and digital image processing technology over the last five decades has improved our ability to track long-term agricultural and vegetation changes. Data cubes are a newer approach to managing satellite imagery and studying temporal patterns. Here, we use the cloud-based Digital Earth Africa, Open Data Cube to analyze 30 years of Landsat imagery and orthomosaics. We analyze long-term trends in vegetation dynamics by comparing annual fractional cover metrics (photosynthetic vegetation, non-photosynthetic vegetation, and bare ground) to the Normalized Difference Vegetation Index. Investigating Djibouti-wide and regional vegetation trends, we provide a comparison of trends between districts and highlight a primary agricultural region in the southeast as a detailed example of vegetation change. The results of the Sen’s slope and Mann–Kendall regression analyses of the data cube suggest a significant decline in vegetation (p = 0.00002), equating to a loss of ~0.09 km2 of arable land per year (roughly 2.7 km2 over the 30-year period). Overall, decreases in photosynthetic vegetation and increases in both non-photosynthetic vegetation and bare soil areas indicate that the region is becoming more arid and that land cover is responding to this trend.