Satellite-Based Background Aerosol Optical Depth Determination via Global Statistical Analysis of Multiple Lognormal Distribution

Author:

Chen Qi-Xiang1,Huang Chun-Lin12,Dong Shi-Kui1ORCID,Lin Kai-Feng3

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

3. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Determining background aerosol optical depth threshold value (BAOD) is critical to aerosol type identification and air pollution control. This study presents a statistical method to select the best BAOD threshold value using the VIIRS DB AOD products at 1 × 1 degree resolution from 2012 to 2019 as a major testbed. A series of multiple lognormal distributions with 1 to 5 peaks are firstly applied to fit the AOD histogram at each grid point, and the distribution with the highest correlation coefficient (R) gives preliminary estimations of BAOD, which is defined as either the intersection point of the first two normal distribution curves when having multiple peaks, or the midpoint between the peak AOD and the first AOD with non-zero probability when the mono peak is the best fit. Then, the lowest 1st to 100th percentile AOD distributions are compared with the preliminary BAOD distribution on a global scale. The final BAOD is obtained from the best cutoff percentile AOD distributions with the lowest bias compared with preliminary BAOD. Results show that the lowest 30th percentile AOD is the best estimation of BAOD for different AOD datasets and different seasons. Analysis of aerosol chemical information from MERRA-2 further supports this selection. Based on the BAOD, we updated the VIIRS aerosol type classification scheme, and the results show that the updated scheme is able to achieve reliable detection of aerosol type change in low aerosol loading conditions.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3