Modelling Floodplain Vegetation Response to Climate Change, Using the Soil and Water Assessment Tool (SWAT) Model Simulated LAI, Applying Different GCM’s Future Climate Data and MODIS LAI Data

Author:

Muhury Newton1,Apan Armando123,Maraseni Tek2ORCID

Affiliation:

1. School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Australia

2. Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba 4350, Australia

3. Institute of Environmental Science and Meteorology, University of the Philippines Diliman, Quezon City 1101, Philippines

Abstract

Scientists widely agree that anthropogenically driven climate change significantly impacts vegetation growth, particularly in floodplain areas, by altering river flow and flood regimes. This impact will accelerate in the future, according to climate change projections. For example, in Australia, climate change has been attributed to a decrease in winter precipitation in the range of 56% to 72.9% and an increase in summer from 11% to 27%, according to different climate scenarios. This research attempts to understand vegetation responses to climate change variability at the floodplain level. Further, this study is an effort to enlighten our understanding of temporal climate change impacts under different climate scenarios. To achieve these aims, a semi-distributed hydrological model was applied at a sub-catchment level to simulate the Leaf Area Index (LAI). The model was simulated against future time series of climate data according to Global Climate Model (GCM) projections. The time series data underwent a non-parametric Mann–Kendall test to detect trends and assess the magnitude of change. To quantify the model’s performance, calibration and validation were conducted against the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI. The calibration and validation results show Nash–Sutcliffe efficiency (NSE) values of 0.85 and 0.78, respectively, suggesting the model’s performance is very good. The modeling results reveal that the rainfall pattern fluctuates under climate projections within the study site, in which vegetation tends to be more vibrant during the warmer seasons. Moreover, the modeling results highlighted increases in the average projected future winter temperatures, which can help vegetation growth during winter. The results of this study may be employed for sustainable floodplain management, restoration, land-use planning, and policymaking, and help floodplain communities better prepare for and respond to changing flood patterns and related challenges under a future changing climate.

Funder

Ph.D. program

Publisher

MDPI AG

Reference88 articles.

1. Climate extremes and the carbon cycle;Reichstein;Nature,2013

2. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity;Xu;For. Ecosyst.,2020

3. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China;Zhou;Acta Oecologica,2014

4. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

5. Climate change and floodplain vegetation—Future prospects for riparian habitat availability along the Rhine River;Mosner;Ecol. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3