Monitoring Dynamically Changing Migratory Flocks Using an Algebraic Graph Theory-Based Clustering Algorithm

Author:

Jiang Qi12,Wang Rui123,Zhang Wenyuan12,Jiao Longxiang12,Li Weidong123,Wu Chunfeng3ORCID,Hu Cheng123ORCID

Affiliation:

1. Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Key Laboratory of Real-Time Information Processing Technology of Embedded, Beijing 100081, China

3. The Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China

Abstract

Migration flocks have different forms, including single individuals, formations, and irregular clusters. The shape of a flock can change swiftly over time. The real-time clustering of multiple groups with different characteristics is crucial for the monitoring of dynamically changing migratory flocks. Traditional clustering algorithms need to set various prior parameters, including the number of groups, the number of nearest neighbors, or the minimum number of individuals. However, flocks may display complex group behaviors (splitting, combination, etc.), which complicate the choice and adjustment of the parameters. This paper uses a real-time clustering-based method that utilizes concepts from the algebraic graph theory. The connected graph is used to describe the spatial relationship between the targets. The similarity matrix is calculated, and the problem of group clustering is equivalent to the extraction of the partitioned matrices within. This method needs only one prior parameter (the similarity distance) and is adaptive to the group’s splitting and combination. Two modifications are proposed to reduce the computation burden. First, the similarity distance can be broadened to reduce the exponent of the similarity matrix. Second, the omni-directional measurements are divided into multiple sectors to reduce the dimension of the similarity matrix. Finally, the effectiveness of the proposed method is verified using the experimental results using real radar data.

Funder

National Natural Science Foundation of China

Special Fund for Research on National Major Research Instruments

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3