MRG-T: Mask-Relation-Guided Transformer for Remote Vision-Based Pedestrian Attribute Recognition in Aerial Imagery

Author:

Zhang Shun1ORCID,Li Yupeng1ORCID,Wu Xiao1,Chu Zunheng1,Li Lingfei1

Affiliation:

1. School of Electronic and Information, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Nowadays, with the rapid development of consumer Unmanned Aerial Vehicles (UAVs), utilizing UAV platforms for visual surveillance has become very attractive, and a key part of this is remote vision-based pedestrian attribute recognition. Pedestrian Attribute Recognition (PAR) is dedicated to predicting multiple attribute labels of a single pedestrian image extracted from surveillance videos and aerial imagery, which presents significant challenges in the computer vision community due to factors such as poor imaging quality and substantial pose variations. Despite recent studies demonstrating impressive advancements in utilizing complicated architectures and exploring relations, most of them may fail to fully and systematically consider the inter-region, inter-attribute, and region-attribute mapping relations simultaneously and be stuck in the dilemma of information redundancy, leading to the degradation of recognition accuracy. To address the issues, we construct a novel Mask-Relation-Guided Transformer (MRG-T) framework that consists of three relation modeling modules to fully exploit spatial and semantic relations in the model learning process. Specifically, we first propose a Masked Region Relation Module (MRRM) to focus on precise spatial attention regions to extract more robust features with masked random patch training. To explore the semantic association of attributes, we further present a Masked Attribute Relation Module (MARM) to extract intrinsic and semantic inter-attribute relations with an attribute label masking strategy. Based on the cross-attention mechanism, we finally design a Region and Attribute Mapping Module (RAMM) to learn the cross-modal alignment between spatial regions and semantic attributes. We conduct comprehensive experiments on three public benchmarks such as PETA, PA-100K, and RAPv1, and conduct inference on a large-scale airborne person dataset named PRAI-1581. The extensive experimental results demonstrate the superior performance of our method compared to state-of-the-art approaches and validate the effectiveness of mask-relation-guided modeling in the remote vision-based PAR task.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3