The Retrieval of Ground NDVI (Normalized Difference Vegetation Index) Data Consistent with Remote-Sensing Observations

Author:

Zhao Qi12ORCID,Qu Yonghua12ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100875, China

2. Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

The Normalized Difference Vegetation Index (NDVI) is widely used for monitoring vegetation status, as accurate and reliable NDVI time series are crucial for understanding the relationship between environmental conditions, vegetation health, and productivity. Ground digital cameras have been recognized as important potential data sources for validating remote-sensing NDVI products. However, differences in the spectral characteristics and imaging methods between sensors onboard satellites and ground digital cameras hinder direct consistency analyses, thereby limiting the quantitative application of camera-based observations. To address this limitation and meet the needs of vegetation monitoring research and remote-sensing NDVI validation, this study implements a novel NDVI camera. The proposed camera incorporates narrowband dual-pass filters designed to precisely separate red and near-infrared (NIR) spectral bands, which are aligned with the configuration of sensors onboard satellites. Through software-controlled imaging parameters, the camera captures the real radiance of vegetation reflection, ensuring the acquisition of accurate NDVI values while preserving the evolving trends of the vegetation status. The performance of this NDVI camera was evaluated using a hyperspectral spectrometer in the Hulunbuir Grassland over a period of 93 days. The results demonstrate distinct seasonal characteristics in the camera-derived NDVI time series using the Green Chromatic Coordinate (GCC) index. Moreover, in comparison to the GCC index, the camera’s NDVI values exhibit greater consistency with those obtained from the hyperspectral spectrometer, with a mean deviation of 0.04, and a relative root mean square error of 9.68%. This indicates that the narrowband NDVI, compared to traditional color indices like the GCC index, has a stronger ability to accurately capture vegetation changes. Cross-validation using the NDVI results from the camera and the PlanetScope satellite further confirms the potential of the camera-derived NDVI data for consistency analyses with remote sensing-based NDVI products, thus highlighting the potential of camera observations for quantitative applications The research findings emphasize that the novel NDVI camera, based on a narrowband spectral design, not only enables the acquisition of real vegetation index (VI) values but also facilitates the direct validation of vegetation remote-sensing NDVI products.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3