A Multi-Scale Forest Above-Ground Biomass Mapping Approach: Employing a Step-by-Step Spatial Downscaling Method with Bias-Corrected Ensemble Machine Learning

Author:

Liu Jingjing1ORCID,Zhang Yuzhen1ORCID

Affiliation:

1. Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The accurate estimation of forest above-ground biomass (AGB) is vital for monitoring changes in forest carbon sinks. However, the spatial heterogeneity of AGB, coupled with inherent uncertainties, poses challenges in acquiring high-quality AGBs. This study introduced a bias-corrected ensemble machine learning (ML) algorithm for AGB downscaling that integrated a ML for AGB mapping with another for residual mapping. The accuracies of six bias-corrected ensemble ML algorithms were evaluated at resolutions of 0.05°, 0.025°, and 0.01°. Moreover, a step-by-step downscaling (SBSD) method was introduced, utilizing bias-corrected ensemble ML algorithms to downscale AGB from 0.1° to 0.05°, 0.025°, and 0.01° resolutions and was compared with the direct downscaling (DD) at three scales. A comparative analysis was conducted in the Daxing’anling Mountains and Xiaoxing’anling Mountains. AGB and corresponding uncertainty maps at three scales were generated using SBSD. The results showed that the efficacy of the XGBoost-based AGB model combined with the random forest-based residual correction model was superior. Spatial patterns in AGB maps generated by SBSD and DD were found to be similar. Notably, SBSD yielded enhanced accuracy in the Daxing’anling Mountains with complex topography, while both performed comparably in the Xiaoxing’anling Mountains with milder topography, highlighting SBSD’s advantages in high heterogeneity areas.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3