Human Standing Posture Motion Evaluation by the Visual Simulation of Multi-Directional Sea-Waves

Author:

Doine RenonORCID,Sakamaki TakanoriORCID

Abstract

Crew fatigue from standing posture motion, caused by ship motion, can lead to marine accidents. Therefore, the mechanism of fatigue in crew members ought to be elucidated. The standing posture of humans is maintained by postural state detection through the visual, vestibular, and somatosensory systems. Humans can adjust their posture through corrective postural reactions (CPR) generated after anticipatory postural adjustments (APAs) by using information from these sensory systems. APAs refer to skills acquired by learning from past motions and perturbations and are prepared by the central nervous system based on visual information before the actual perturbation occurs. We hypothesized that APAs would decrease fatigue in crew members by stabilizing their standing posture motions. We aimed to clarify the human standing posture control influenced by APAs based on visual information. To this end, we presented wave images with different wave directions to the participants using a visual simulator and analyzed their standing posture motion. We found that the participants stabilized their standing posture based on the projected wave directions. This showed that the participants predicted ship motion from the wave images and controlled their center of pressure (COP) through APAs. Individual differences in standing postural motion may indicate the subjective variation of APAs based on individual experiences. This study was limited to males aged 20–23 years. To generalize this study, randomized controlled trials should be performed with participants of multiple age groups, including men and women.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. 4M4 (5) E Analysis: Analysis of Accident Cases,2021

2. Vessel Motion Effects on Crew,2015

3. Energy expenditure, physical work load and postural control during walking on a moving platform;Wertheim;TNO Def. Res.,1994

4. The influence of ship movements on the energy expenditure of fishermen: A study during a North Sea voyage in calm weather;Breidahl;Int. Marit. Health,2013

5. Analysis of the Standing Postural Motion of Passengers against Ship Motion

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3