Domain Adaptation Speech-to-Text for Low-Resource European Portuguese Using Deep Learning

Author:

Medeiros Eduardo1ORCID,Corado Leonel1ORCID,Rato Luís12ORCID,Quaresma Paulo12ORCID,Salgueiro Pedro12ORCID

Affiliation:

1. Escola de Ciências e Tecnologia, Universidade de Évora, 7000-671 Évora, Portugal

2. Centro ALGORITMI, Vista Lab, Universidade de Évora, 7000-671 Évora, Portugal

Abstract

Automatic speech recognition (ASR), commonly known as speech-to-text, is the process of transcribing audio recordings into text, i.e., transforming speech into the respective sequence of words. This paper presents a deep learning ASR system optimization and evaluation for the European Portuguese language. We present a pipeline composed of several stages for data acquisition, analysis, pre-processing, model creation, and evaluation. A transfer learning approach is proposed considering an English language-optimized model as starting point; a target composed of European Portuguese; and the contribution to the transfer process by a source from a different domain consisting of a multiple-variant Portuguese language dataset, essentially composed of Brazilian Portuguese. A domain adaptation was investigated between European Portuguese and mixed (mostly Brazilian) Portuguese. The proposed optimization evaluation used the NVIDIA NeMo framework implementing the QuartzNet15×5 architecture based on 1D time-channel separable convolutions. Following this transfer learning data-centric approach, the model was optimized, achieving a state-of-the-art word error rate (WER) of 0.0503.

Funder

Altice Labs

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference34 articles.

1. Ruan, S., Wobbrock, J.O., Liou, K., Ng, A., and Landay, J. (2016). Speech Is 3x Faster than Typing for English and Mandarin Text Entry on Mobile Devices. arXiv.

2. Data Mining, Machine Learning, Deep Learning, Chemometrics Definitions, Common Points and Trends (Spoiler Alert: VALIDATE your models!);Amigo;Braz. J. Anal. Chem.,2021

3. Eberhard, D.M., Simons, G.F., and Fennig, C.D. (2023). Ethnologue: Languages of the World, SIL International. [26th ed.].

4. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press.

5. Kuchaiev, O., Li, J., Nguyen, H., Hrinchuk, O., Leary, R., Ginsburg, B., Kriman, S., Beliaev, S., Lavrukhin, V., and Cook, J. (2019). NeMo: A toolkit for building AI applications using Neural Modules. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3