Evaluation of Water Resources Utilization Efficiency Based on DEA and AHP under Climate Change

Author:

Zhang Shanjun1,Liu Jia1,Li Chuanzhe1,Yu Fuliang1,Jing Lanshu12,Chen Weifan1

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

In the context of climate change, the problem of water scarcity is becoming increasingly serious, and improving the efficiency of water resources use is an important measure to alleviate this problem. The evaluation of water resources utilization efficiency has become the basis of water resource management. Data envelopment analysis (DEA) and analytic hierarchy process (AHP) are widely used in the evaluation of water resources utilization efficiency. However, one of these methods is mostly used for evaluation, which cannot reflect the influence of both objective and subjective factors. Therefore, in this study, we propose a water resources utilization efficiency index (WEI) to evaluate the water resources utilization efficiency of each region in the Tumen River Basin (TRB), combining both DEA and AHP methods. Firstly, the DEA-CCR model was used to quantify domestic, agricultural and industrial water use efficiency in the TRB. The DEA-BCC model was used to analyze the main influences on water use efficiency in each sector. Secondly, the WEI was constructed by assigning weights using the AHP model based on the importance of each water use sector. The results show that the WEI values for most areas within the TRB trended upwards between 2014 and 2019. In particular, domestic water use efficiency ranged from 0.294 to 0.775, while agricultural and industrial water use efficiency ranged from 0.039 to 0.054 and 0.031 to 0.375, respectively. Technical efficiency is the main factor influencing water use efficiency in TRB. This study could provide a basis for water resource management and mitigation of water scarcity in the context of climate change.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3