Procalcitonin Detection Using Immunomagnetic Beads-Mediated Surface-Enhanced Raman Spectroscopy

Author:

Huang Jiayue123ORCID,Zhang Dagan4,Zu Yan2,Zhang Lexiang12ORCID

Affiliation:

1. Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China

3. State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative In-novation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China

4. Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

Abstract

The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.

Funder

National Nature Science Foundation of China

National Key Research and Development Program of China

Zhejiang Provincial Natural Science Foundation of China

Wenzhou Basic Research Projects

Key Projects of Wenzhou Science and Technology Bureau

Key Laboratory of Structural Malformations in Children of Zhejiang Province

Wenzhou Institute, University of Chinese Academy of Sciences

Scientific and Technological Innovation Major Base of Guangxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3