CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+

Author:

Song Chang1,Wang Fangfang2,Zhang Xin1,Ma Yuanxia1,Wu Yangyu3,He Mingxia2,Niu Xiangheng3ORCID,Sun Mengmeng2

Affiliation:

1. School of Arts and Media, Sichuan Agricultural University, Chengdu 611130, China

2. College of Science, Sichuan Agricultural University, Ya’an 625014, China

3. School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China

Abstract

Transition metal doping is an ideal strategy to construct multifunctional and efficient nanozymes for biosensing. In this work, a metal-doped CoMnOx nanozyme was designed and synthesized by hydrothermal reaction and high-temperature calcination. Based on its oxidase activity, an “on-off-on” smartphone sensing platform was established to detect ziram and Cu2+. The obtained flower-shaped CoMnOx could exhibit oxidase-, catalase-, and laccase-like activities. The oxidase activity mechanism of CoMnOx was deeply explored. O2 molecules adsorbed on the surface of CoMnOx were activated to produce a large amount of O2·-, and then, O2·- could extract acidic hydrogen from TMB to produce blue oxTMB. Meanwhile, TMB was oxidized directly to the blue product oxTMB via the high redox ability of Co species. According to the excellent oxidase-like activity of CoMnOx, a versatile colorimetric detection platform for ziram and Cu2+ was successfully constructed. The linear detection ranges for ziram and Cu2+ were 5~280 μM and 80~360 μM, and the detection limits were 1.475 μM and 3.906 μM, respectively. In addition, a portable smartphone platform for ziram and Cu2+ sensing was established for instant analysis, showing great application promise in the detection of real samples including environmental soil and water.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

National Training Program of Innovation and Entrepreneurship for Undergraduates

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3