SMODERP2D—Sheet and Rill Runoff Routine Validation at Three Scale Levels

Author:

Kavka PetrORCID,Jeřábek Jakub,Landa MartinORCID

Abstract

Water erosion is the main cause of soil degradation in agricultural areas. Rill erosion can contribute vastly to the overall erosion rate. It is therefore crucial to identify areas prone to rill erosion in order to protect soil quality. Research on rainfall-runoff and subsequent sediment transport processes is often based on observing these processes at several scales, followed by a mathematical description of the observations. This paper presents the use of a combination of data obtained by different approaches at multiple scales to validate the SMODERP2D episodic hydrological-erosion model. This model describes infiltration, surface retention, surface runoff, and rill flow processes. In the model, the surface runoff generation is based on a water balance equation and is described by two separate processes: (a) for sheet flow, the model uses the kinematic wave approximation, which has been parameterized for individual soil textural classes using laboratory rainfall simulations, and (b) for rill flow, the Manning formula is used. Rill flow occurs if the critical water level of sheet flow is exceeded. The concept of model validation presented here uses datasets at different scales to study the surface runoff and erosion processes on the Býkovice agricultural catchment. The first dataset consisted of runoff generated by simulated rainfall on plots with dimensions of 2 × 8 m. The second dataset consisted of the runoff response to natural rainfall events obtained from long-term monitoring of 50 m2 plots. These two datasets were used to validate and calibrate the sheet flow and infiltration parameters. The third dataset consisted of occurrence maps of rills formed during heavy rainfalls obtained using remote sensing methods on a field plot with an area of 36.6 ha. This last dataset was used to validate the threshold critical water level that is responsible in the model for rill flow initiation in the SMODERP2D model. The validation and the calibration of the surface runoff are performed well according to the Nash–Sutcliffe efficiency coefficient. The scale effect was evident in the 50 m2 plots where parameters lower than the mean best fit the measured data. At the field plot scale, pixels with measured rills covered 5% of the total area. The best model solution achieved a similar rill cover for a vegetated soil surface. The model tended to overestimate the occurrence of rills in the case of simulations with bare soil. Although rills occurred both in the model and in the monitored data in many model runs, a spatial mismatch was often observed. This mismatch was caused by flow routing algorithm displacement of the runoff path. The suitability of the validation and calibration process at various spatial scales has been demonstrated. In a future study, data will be obtained from various localities with various land uses and meteorological conditions to confirm the transferability of the procedure.

Funder

Ministry of Agriculture

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference62 articles.

1. NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN

2. Nitrogen and phosphorus exportation in the Garonne Basin (France)

3. Soil Erosion in Europe;Boardman,2006

4. RUSLE: Revised universal soil loss equation;Renard;J. Soil. Water Conserv.,1991

5. A finite element approach to watershed runoff

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3