Development of a Microheater with a Large Heating Area and Low Thermal Stress in the Heating Area

Author:

Zhang Tao1,Pan Zequan1,Zhang Chunhua1,Xiong Liuguang1,Yang Chunmei2,Zhang Jian1ORCID,Shi Mengjiao3,Wang Yuhang1,Qu Wen2

Affiliation:

1. College of Electromechanical Engineering, Northeast Forestry University, Harbin 150040, China

2. Forestry and Woodworking Machinery Engineering Technology Center, Northeast Forestry University, Harbin 150040, China

3. College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

In this paper, a microheater that can absorb thermal stress and has a large heating area is demonstrated by optimizing the structure and process of the microheater. Four symmetrically distributed elongated support beam structures were machined around the microheater via deep silicon etching. This design efficiently mitigates the deformation of the heated region caused by thermal expansion and enhances the structural stability of the microheater. The updated microheater no longer converts the work area into a thin film; instead, it creates a stable heating platform that can uniformly heat a work area measuring 10 × 10 mm2. The microheater is verified to have high temperature uniformity and structural stability in finite element simulation. Finally, thorough investigations of electrical–thermal–structural characterization were conducted. The test findings show that the new microheater can achieve 350 °C with a power consumption of 6 W and a thermal reaction time of 22 s. A scan of its whole plane reveals that the surface of the working area of the new microheater is flat and does not distort in response to variations in temperature, offering good structural stability.

Funder

National Natural Science Foundation

Key research and development project in Heilongjiang Province, China

Postdoctoral Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3