Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing

Author:

Fu Qiang1,Yan Lei1,Tan Shuanglong12ORCID,Liu Yang12,Wang Lingjie1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

To build a long-wave infrared catadioptric optical system for deep space low-temperature target detection with a lightweight and wide field of view, this work conducted a study that encompasses a local cooling optical system, topology optimization-based metal mirror design, and additive manufacturing. First, a compact catadioptric optical system with local cooling was designed. This system features a 55 mm aperture, a 110 mm focal length, and a 4-degree by 4-degree field of view. Secondly, we applied the principles of topology optimization to design the primary mirror assembly, the secondary mirror assembly, and the connecting baffle. The third and fourth modes achieved a resonance frequency of 1213.7 Hz. Then, we manufactured the mirror assemblies using additive manufacturing and single-point diamond turning, followed by the centering assembly method to complete the optical assembly. Lastly, we conducted performance testing on the system, with the test results revealing that the modulation transfer function (MTF) curves of the optical system reached the diffraction limit across the entire field of view. Remarkably, the system’s weight was reduced to a mere 96.04 g. The use of additive manufacturing proves to be an effective means of enhancing optical system performance.

Funder

Youth innovation promotion association cas

Youth growth technology program of Jilin province science and technology development plan

Publisher

MDPI AG

Reference13 articles.

1. A novel technology on infrared multi-band low-background detection;Zhen;Infrared Laser Eng.,2020

2. Development and thinking of precision homing terminal guidance technology for air and missile defense;Fan;Air Space Def.,2020

3. Large stable aluminum optics for aerospace applications;Vukobratovich;Proc. SPIE,2011

4. Super-polished aluminum mirrors through the application of chemical mechanical polishing techniques;Oeggenborg;Curr. Dev. Lens Des. Opt. Eng. VII Int. Soc. Opt. Photonics,2006

5. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope;Xie;Appl. Opt.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3