Effect of α″-Ti Martensitic Phase Formation on Plasticity in Ti–Fe–Sn Ultrafine Eutectic Composites

Author:

Neelakandan Deva Prasaad1ORCID,Kim Wonhyeong1ORCID,Prorok Barton C.1ORCID,Mirkoohi Elham1,Kim Dong-Joo1ORCID,Liaw Peter K.2ORCID,Song Gian3,Lee Chanho1

Affiliation:

1. Department of Materials and Mechanical Engineering, Auburn University, Auburn, AL 36849, USA

2. Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

3. Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea

Abstract

Extensive research has been conducted on Ti–Fe–Sn ultrafine eutectic composites due to their high yield strength, compared to conventional microcrystalline alloys. The unique microstructure of ultrafine eutectic composites, which consists of the ultrafine-grained lamella matrix with the formation of primary dendrites, leads to high strength and desirable plasticity. A lamellar structure is known for its high strength with limited plasticity, owing to its interface-strengthening effect. Thus, extensive efforts have been conducted to induce the lamellar structure and control the volume fraction of primary dendrites to enhance plasticity by tailoring the compositions. In this study, however, it was found that not only the volume fraction of primary dendrites but also the morphology of dendrites constitute key factors in inducing excellent ductility. We selected three compositions of Ti–Fe–Sn ultrafine eutectic composites, considering the distinct volume fractions and morphologies of β-Ti dendrites based on the Ti–Fe–Sn ternary phase diagram. As these compositions approach quasi-peritectic reaction points, the α″-Ti martensitic phase forms within the primary β-Ti dendrites due to under-cooling effects. This pre-formation of the α″-Ti martensitic phase effectively governs the growth direction of β-Ti dendrites, resulting in the development of round-shaped primary dendrites during the quenching process. These microstructural evolutions of β-Ti dendrites, in turn, lead to an improvement in ductility without a significant compromise in strength. Hence, we propose that fine-tuning the composition to control the primary dendrite morphology can be a highly effective alloy design strategy, enabling the attainment of greater macroscopic plasticity without the typical ductility and strength trade-off.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

National Science Foundation

Army Research Office

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3