Exploring the Potential of 3D Printing Technology for Sustainable Plastic Roads: A Preliminary Investigation

Author:

Al-Atroush Mohamed Ezzat12ORCID,Almushcab Jumana3,Alhudaif Duha4,Meskinyar Yosra4

Affiliation:

1. Civil and Environmental Engineering Program, College of Engineering, Prince Sultan University, Riyadh 11543, Saudi Arabia

2. Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 12211, Saudi Arabia

3. Software Engineering, College of Computer and Information Systems, Prince Sultan University, Riyadh 11543, Saudi Arabia

4. Architectural Engineering Department, College of Architecture and Design, Prince Sultan University, Riyadh 11543, Saudi Arabia

Abstract

The urgency of climate change has highlighted the need for sustainable road construction materials, replacing the conventional asphalt, which significantly contributes to global warming and the urban heat island effect. With this in mind, the construction of the world’s first 30-m plastic road in Zwolle, Netherlands, in 2018, opened the door for novel plastic applications as paving materials. However, its application is currently still limited to sidewalks and light-load cycling lanes. The feasibility of utilizing 3D printing technology to provide the necessary structural design flexibility for the production of plastic pavement modules that can withstand heavy traffic and extreme weather conditions was examined in this preliminary study. The suitability of six plastic materials (PLA, PETG, ABS, TPU, Nylon, and polycarbonate) for 3D printing was evaluated. Polylactic acid (PLA), and polyethylene terephthalate glycol (PETG) were identified as the most suitable materials for this study. Three small-scale structural systems, namely hollow modular with plastic columns, hollow modular with solid plastic cones, and hollow modular with X-bracing, were designed and successfully printed using the adopted materials and a 3D printer. The developed systems were subsequently subjected to compression testing to assess their structural performance under heavy traffic loads and demonstrate the feasibility of the concept. The results showed that the PLA conic structural system was effective and exhibited the highest compression strength, while the PETG conic system exhibited ductile behavior with superior thermal stability. The study suggests that the hybrid system of PLA and PETG materials may improve the overall performance, combine flexibility and strength, and potentially improve the resistance to extreme weather and heavy traffic. These findings prove that 3D printing technology has the potential to revolutionize the road construction industry and provide more sustainable solutions for infrastructure development.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3