Optimizing Operational Conditions of Pilot-Scale Membrane Capacitive Deionization System

Author:

Lee Bokjin1,Oh Changseog12,An Jusuk13,Yeon Seungjae1,Oh Hyun Je12

Affiliation:

1. Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea

2. Department of Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

3. Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea

Abstract

In this study, we developed a pilot-scale membrane capacitive deionization (MCDI) system for treating mildly brackish water and examined various operational parameters, including module arrangements, adsorption/desorption times, and flow rates. As we aimed to optimize these parameters to increase total dissolved solids (TDS) removal efficiency, the results revealed that the dual-series mode module arrangement and an adsorption time of 120 s with a flow rate of 10 L/min achieved the highest TDS removal efficiency of 99%. Energy consumption analysis showed that lower flow rates were associated with higher TDS removal efficiencies, highlighting the balance between energy consumption and water quality. This study provides insights into optimizing a pilot-scale MCDI for efficient water supply solutions, offering promise for sustainable and eco-friendly water treatment.

Funder

Korea Environment Industry & Technology Institute

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3