Simulating the Impact of the U.S. Inflation Reduction Act on State-Level CO2 Emissions: An Integrated Assessment Model Approach

Author:

Wang Tianye1,Shittu Ekundayo1ORCID

Affiliation:

1. Engineering Management and Systems Engineering, The George Washington University, Washington, DC 20052, USA

Abstract

Climate change mitigation measures are often projected to reduce anthropogenic carbon dioxide concentrations. Yet, it seems there is ample evidence suggesting that we have a limited understanding of the impacts of these measures and their combinations. For example, the Inflation Reduction Act (IRA) enacted in the U.S. in 2022 contains significant provisions, such as the electric vehicle (EV) tax credits, to reduce CO2 emissions. However, the impact of such provisions is not fully understood across the U.S., particularly in the context of their interactions with other macroeconomic systems. In this paper, we employ an Integrated Assessment Model (IAM), the Global Change Assessment Model (GCAM), to estimate the future CO2 emissions in the U.S. GCAM is equipped to comprehensively characterize the interactions among different systems, e.g., energy, water, land use, and transportation. Thus, the use of GCAM-USA that has U.S. state-level resolution allows the projection of the impacts and consequences of major provisions in the IRA, i.e., EV tax credits and clean energy incentives. To compare the performance of these incentives and credits, a policy effectiveness index is used to evaluate the strength of the relationship between the achieved total CO2 emissions and the overarching emission reduction costs. Our results show that the EV tax credits as stipulated in the IRA can only marginally reduce carbon emissions across the U.S. In fact, it may lead to negative impacts in some states. However, simultaneously combining the incentives and tax credits improves performance and outcomes better than the sum of the individual effects of the policies. This demonstrates that the whole is greater than the sum of the parts in this decarbonization approach. Our findings provide insights for policymakers with a recommendation that combining EV tax credits with clean energy incentives magnifies the intended impact of emission reduction.

Funder

U.S. National Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference60 articles.

1. (2023, February 17). U.S. Energy-Related Carbon Dioxide Emissions, Available online: https://www.eia.gov/environment/emissions/carbon/.

2. Shirley, C., and Gecan, R. (2022). Emissions of Carbon Dioxide in the Transportation Sector.

3. Electrification of light-duty vehicle fleet alone will not meet mitigation targets;Milovanoff;Nat. Clim. Chang.,2020

4. The role of transport electrification in global climate change mitigation scenarios;Zhang;Environ. Res. Lett.,2020

5. (2022, December 12). The Effects of Climate Change, Available online: https://climate.nasa.gov/effects/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3