Transfer-Ensemble Learning: A Novel Approach for Mapping Urban Land Use/Cover of the Indian Metropolitans

Author:

Barman Prosenjit1,Mustak Sheikh1,Kuffer Monika2ORCID,Singh Sudhir Kumar3ORCID

Affiliation:

1. Department of Geography, Central University of Punjab, Bathinda 151401, India

2. Faculty of Geo-Information Science and Earth Observation, ITC, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. K. Banerjee Centre of Atmospheric and Ocean Studies, IIDS, University of Allahabad, Prayagraj 211002, India

Abstract

Land use and land cover (LULC) classification plays a significant role in the analysis of climate change, evidence-based policies, and urban and regional planning. For example, updated and detailed information on land use in urban areas is highly needed to monitor and evaluate urban development plans. Machine learning (ML) algorithms, and particularly ensemble ML models support transferability and efficiency in mapping land uses. Generalization, model consistency, and efficiency are essential requirements for implementing such algorithms. The transfer-ensemble learning approach is increasingly used due to its efficiency. However, it is rarely investigated for mapping complex urban LULC in Global South cities, such as India. The main objective of this study is to assess the performance of machine and ensemble-transfer learning algorithms to map the LULC of two metropolitan cities of India using Landsat 5 TM, 2011, and DMSP-OLS nightlight, 2013. This study used classical ML algorithms, such as Support Vector Machine-Radial Basis Function (SVM-RBF), SVM-Linear, and Random Forest (RF). A total of 480 samples were collected to classify six LULC types. The samples were split into training and validation sets with a 65:35 ratio for the training, parameter tuning, and validation of the ML algorithms. The result shows that RF has the highest accuracy (94.43%) of individual models, as compared to SVM-RBF (85.07%) and SVM-Linear (91.99%). Overall, the ensemble model-4 produces the highest accuracy (94.84%) compared to other ensemble models for the Kolkata metropolitan area. In transfer learning, the pre-trained ensemble model-4 achieved the highest accuracy (80.75%) compared to other pre-trained ensemble models for Delhi. This study provides innovative guidelines for selecting a robust ML algorithm to map urban LULC at the metropolitan scale to support urban sustainability.

Funder

University Grants Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference99 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3