Synthesis and Environmental Applications of Nanoporous Materials Derived from Coal Fly Ash

Author:

Yuan Ning12ORCID,Xu Hao2,Liu Yanjun2,Tan Kaiqi2,Bao Yixiang1

Affiliation:

1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, National Institute of Clean and Low Carbon Energy, Beijing 102211, China

2. School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Coal fly ash (CFA) is the primary solid waste generated by the coal-fired industry, and the predominant treatment methods include accumulation, landfill, and the production of cement-based building materials. However, the availability of these methods is relatively limited, and there is a need for technological upgrades. The extensive accumulation not only leads to environmental pollution but also has detrimental effects on human health. With its loose structure and main chemical components of Al2O3 and SiO2, CFA is conducive to the synthesis of promising nanoporous materials for applications in adsorption. The use of CFA as a raw material can significantly reduce preparation costs, improve comprehensive utilization efficiency, and manufacture more valuable products, aligning with the current strategy of sustainable development. Currently, the most widely used synthesis method is hydrothermal synthesis. This review focuses on the principles, methods, and influencing factors of synthesis, with particular emphasis on CFA-based mesoporous silica, zeolites, and metal–organic frameworks (MOFs), which have not been systematically reviewed previously. The quality of these synthesized nanoporous materials can be finely adjusted through the synthesis process. A comparison of the advantages and disadvantages of each process will be made, and the impact of the synthesis conditions on the synthetic products will be analyzed. Additionally, a brief discussion on the latest research advances in their applications in adsorption will be provided. Finally, relevant challenges and issues have been proposed.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3