Political Optimization Algorithm with a Hybrid Deep Learning Assisted Malicious URL Detection Model

Author:

Aljebreen Mohammed1,Alrayes Fatma S.2,Aljameel Sumayh S.3ORCID,Saeed Muhammad Kashif4ORCID

Affiliation:

1. Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

2. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Saudi Aramco Cybersecurity Chair, Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

4. Department of Computer Science, Applied College, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia

Abstract

With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability, transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs in an IoT environment is crucial to protect devices and the network from potential security threats. Malicious URL detection is an essential element of cybersecurity. It is established that malicious URL attacks mean large risks in smart cities, comprising financial damages, losses of personal identifications, online banking, losing data, and loss of user confidentiality in online businesses, namely e-commerce and employment of social media. Therefore, this paper concentrates on the proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC technique performs pre-processing to transform the data to a compatible format, and a Fast Text word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning (HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal accuracy of 99.31%.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3