A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles

Author:

Yin Zongjun1,Ma Xuegang1,Zhang Chunying1,Su Rong1ORCID,Wang Qingqing1

Affiliation:

1. School of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu 241100, China

Abstract

With increasing global attention to climate change and environmental sustainability, the sustainable development of the automotive industry has become an important issue. This study focuses on the regenerative braking issues in pure electric vehicles. Specifically, it intends to elucidate the influence of the braking force distribution of the front and rear axles on access to energy recovery efficiency. Combining the I curve of a pure electric vehicle and the boundary line of the Economic Commission of Europe (ECE) regulations, the braking force distribution relationship between the front and rear axles is formulated to satisfy braking stability. The maximum regenerative braking force of the motor is determined based on the motor torque characteristics and battery charging power, and the regenerative braking torque is optimized by combining the constraints of the braking strength, battery state of charge (SOC), and vehicle speed. Six road working conditions are built, including the New European Driving Cycle (NEDC), the World Light-Duty Vehicle Test Cycle (WLTC), Federal Test Procedure 72 (FTP-72), Federal Test Procedure 75 (FTP-75), the China Light-Duty Vehicle Test Cycle—Passenger (CLTC-P), and the New York City Cycle (NYCC). The efficiency of the regenerative braking strategy is validated by using the Simulink/MATLAB simulation. The simulation results show that the proposed dynamic logic threshold control strategy can significantly improve the energy recovery effect of electric vehicles, and the energy recovery efficiency can be improved by at least 25% compared to the situation without regenerative braking. Specifically, under the aforementioned road working conditions, the braking energy recovery efficiency levels are 27.69%, 42.18%, 49.54%, 47.60%, 49.28%, and 51.06%, respectively. Moreover, the energy recovery efficiency obtained by the current dynamic logic threshold is also compared with other published results. The regenerative braking control method proposed in this article makes the braking control of electric vehicles more precise, effectively reducing energy consumption and improving the driving range of electric vehicles.

Funder

University of Natural Science Research Project of Anhui Province

Intelligent Detection Research Team Funds for the Anhui Institute of Information Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3