Can Docked Bike-Sharing Systems Reach Their Dual Sustainability in Terms of Environmental Benefits and Financial Operations? A Comparative Study from Nanjing, 2017 and 2023

Author:

Liu Yixiao12ORCID,Liu Wenshan1,Zhao Rui1,Tian Lixin123ORCID

Affiliation:

1. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

2. Jiangsu Province Engineering Research Center of Spatial Big Data, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

3. Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang 212013, China

Abstract

In this paper, we investigate the sustainability of docked bike-sharing in Nanjing in terms of environmental benefits and financial operations by comparing the data of March 2017 and March 2023 in Nanjing. We modify a community detection method, give and prove dynamic boundary conditions for the objective function of the heuristic algorithm, and realize the estimation of the rebalancing coefficients for this mega-system, thus obtaining more accurate emission factors. We find that there are significant differences in the results obtained from environmental benefit assessments over time. Further, there are also significant differences at the national level. This may signify that the assessment data of one country’s system cannot give a direct reference for another country’s system. Second, we considered the economic basis required for the environmental benefits of docked bike-sharing systems. We have calculated the sustainability of the system’s financial operations by considering its revenues over the next nine years, including the cost of facility inputs, facility upgrades, dispatching costs, labor costs, maintenance costs, and the time value of money. The results show a 4.6-fold difference in emission factors between 2017 and 2023; comparing 2017 to 2023 (when demand loss has been severe), the investment in 2017 will be recouped 2 years later than in 2023. Switching distribution vehicles from fuel vehicles to electric trikes would severely deteriorate the operator’s key financial metrics while only reducing the emission factor value by 8.64 gCO2 eq/km, leading to an unsustainable system. This signals the potential for the financial unsustainability, or even bankruptcy, of operators if the requirements for sustained emissions reductions from the bike-sharing system are divorced from the form of the economy on which it is sustainably operated. Finally, we consider the geographical patterns between environmental benefits and financial operations. We find that financial sustainability varies across geographic locations. Under financial sustainability, we gave emission factors under the mix distribution vehicle scenario.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Major programs of the National Social Science Foundation of China

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3