Affiliation:
1. Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar
Abstract
A lot of research has been carried out to improve the sustainability of seawater desalination. Despite progress, relatively few studies have analyzed the sustainability of seawater desalination processes integrated on two fronts, i.e., (i) process integration and (ii) energy integration. In addition, life cycle assessment studies on multi-stage flash (MSF) desalination often neglect the impact of the disposed brine by assuming that dilution of the discharged brine impacts on ecological systems less. The present study contributes to these omissions by exploring the environmental sustainability of seawater desalination systems using life cycle impact assessment (LCIA). More specifically, the LCIA of Seawater Reverse Osmosis (SWRO) integrated with (i) an Electro-Dialysis (EDBMED) process and (ii) solar photovoltaics (PV) is investigated. Life cycle analysis was used to identify pertinent indicators of the LCIA and their implications in SWRO. The comparative analysis reveals that the advantage of SWRO as compared to other technologies such as MSF is energy efficiency, at estimated levels of 75.0%. The study concludes that despite the technological challenges associated with sustainable desalination and sustainable brine management, integrating renewable energy into seawater desalination can contribute to the sustainability improvements of seawater desalination systems. The findings of this paper provide an initial assessment of the ecological footprints of seawater desalination systems.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献