Synthesis and Evaluation of Geopolymer Mixtures Containing Chronologically Aged Basic Oxygen Furnace Slags

Author:

Tukaziban Aizhan1,Shon Chang-Seon1ORCID,Zhang Dichuan1ORCID,Kim Jong Ryeol1ORCID,Kim Ji-Hyun2ORCID,Chung Chul-Woo3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

2. Multidisciplinary Infra-Technology Research Laboratory, Pukyong National University, Busan 48513, Republic of Korea

3. Division of Architectural and Fire Protection Engineering, Pukyong National University, Busan 48513, Republic of Korea

Abstract

Applying industrial by-products as a substitution for conventional construction materials (natural resources) is a superior solution for the environment in terms of waste management and reduction in greenhouse emissions and for the construction industry in terms of cost and expenditure. Applying basic oxygen furnace slag (BOFS), one of the metallurgical industry by-products, as a construction material can be a high-potential and promising idea. However, the utilization of BOFS in construction applications is considerably limited because of its inherent characteristics leading to volumetric expansion behavior caused by the chemical reaction between free lime (f-CaO) and water. This study used geopolymer technology to stabilize the expansive behavior of chronologically aged BOFS aggregates. The compressive strength, expansion behavior, and drying shrinkage characteristics of a normal ordinary Portland cement (OPC) mixture and a geopolymer mixture containing siliceous river sand and chronologically aged BOFS aggregates were investigated. The test results showed that the compressive strength of geopolymer mixtures containing chronologically aged BOFS aggregate achieved 64.02 MPa, and the expansion behavior of geopolymer mixtures was improved compared with normal OPC mixtures containing the same BOFS aggregates, reaching 0.02% and 0.44%, respectively. However, due to the air-curing method, geopolymer mixtures had higher drying shrinkage values than normal OPC mixtures. Therefore, further studies should be conducted to investigate how to control the drying shrinkage of geopolymer mixtures containing chronologically aged BOFS aggregate.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3