Construction of Green Ecological Network in Qingdao (Shandong, China) Based on the Combination of Morphological Spatial Pattern Analysis and Biodiversity Conservation Function Assessment

Author:

Tao Ling1ORCID,Chen Yanni1,Chen Fang2,Li Haifang1

Affiliation:

1. College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China

2. Laoshan Branch of Qingdao Ecological Environmental Bureau, Qingdao 266100, China

Abstract

Building urban green ecological network systems and increasing urban and rural landscape connectivity are effective ways to improve urban biodiversity and landscape sustainability. The ecological sources in the main urban area of Qingdao City (Shandong, China) were identified based on morphological spatial pattern analysis (MSPA) combined with a biodiversity conservation function assessment, with the ecological corridors established and the ecological network structure optimized. The results showed that (1) the study area lacked high-quality patches with strong landscape connectivity; (2) the potential green ecological network of the study area was composed of 38 ecological sources, 703 ecological corridors, and 284 ecological nodes, effectively connecting urban and suburban green spaces; (3) after optimization, the green ecological network contained a total of 223 important corridors and 61 key nodes, with significantly increased network connectivity; (4) the optimal ecological corridor width in Qingdao was determined to be 30 m. Our study provided important guidance for the construction of ecological security patterns and scientific evidence to support urban green space planning and sustainable development in Qingdao.

Funder

Qingdao Science and Technology Foundation for Public Wellbeing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3