HALNet: Partial Point Cloud Registration Based on Hybrid Attention and Deep Local Features

Author:

Wang Deling1,Hao Huadan1,Zhang Jinsong1ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Abstract

Point cloud registration is an important task in computer vision and robotics which is widely used in 3D reconstruction, target recognition, and other fields. At present, many registration methods based on deep learning have better registration accuracy in complete point cloud registration, but partial registration accuracy is poor. Therefore, a partial point cloud registration network, HALNet, is proposed. Firstly, a feature extraction network consisting mainly of adaptive graph convolution (AGConv), two-dimensional convolution, and convolution block attention (CBAM) is used to learn the features of the initial point cloud. Then the overlapping estimation is used to remove the non-overlapping points of the two point clouds, and the hybrid attention mechanism composed of self-attention and cross-attention is used to fuse the geometric information of the two point clouds. Finally, the rigid transformation is obtained by using the fully connected layer. Five methods with excellent registration performance were selected for comparison. Compared with SCANet, which has the best registration performance among the five methods, the RMSE(R) and MAE(R) of HALNet are reduced by 10.67% and 12.05%. In addition, the results of the ablation experiment verify that the hybrid attention mechanism and fully connected layer are conducive to improving registration performance.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3