Numerical Study of the Effects of Asymmetric Velocity Profiles in a Curvilinear Channel on Migration of Neutral Buoyant Particle

Author:

Naito Ryo1,Fukui Tomohiro2

Affiliation:

1. Department of Master’s Program, Kyoto Institute of Technology, Kyoto 606-8585, Japan

2. Department of Mechanical Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan

Abstract

The microstructure and suspended particle behavior should be considered when studying the flow properties exhibited by particle suspension. In addition, particle migration, also known as Segré–Silberberg effects, alters the microstructure of the suspension and significantly affects the viscosity properties of the suspension. Therefore, particle behavior with respect to the changes in mechanical factors should be considered to better understand suspension. In this study, we investigated the particle behavior in asymmetric velocity profiles with respect to the channel center numerically using the lattice Boltzmann method and a two-way coupling scheme. Our findings confirmed that the final equilibrium position of particles in asymmetric velocity profiles converged differently between the outer and inner wall sides with respect to the channel center. This indicates that the mechanical equilibrium position of particles can be changed by asymmetric velocity profiles. In addition, centrifugal force acting on the particles is also important in the study of equilibrium position. These results suggest that the microstructure and viscosity characteristics of a suspension in a pipe could be handled by changes in velocity profiles.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3