Experimental Study on the Effect of the Angle of Attack on the Flow-Induced Vibration of a Harbor Seal’s Whisker

Author:

Wei Yuhan1,Ji Chunning1ORCID,Yuan Dekui1,Song Liqun1,Xu Dong2ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China

2. Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Nanjing 210024, China

Abstract

A harbor seal’s whisker is able to sense the trailing vortices of marine organisms due to its unique three-dimensional wavy shape, which suppresses the vibrations caused by its own vortex-shedding, while exciting large-amplitude and synchronized vibrations in a wake flow. This provides insight into the development of whisker-inspired sensors, which have broad applications in the fields of ocean exploration and marine surveys. However, the harbor seal’s whisker may lose its vibration suppression ability when the angle of attack (AoA) of the incoming flow is large. In order to explore the flow-induced vibration (FIV) features of a harbor seal’s whisker at various angles of attack (θ=0–90∘), this study experimentally investigates the effect of AoA on the vibration response of a whisker model in a wide range of reduced velocities (Ur = 3–32.2) and the Reynolds number, Re = 400–7000, in a circulating water flume. Meanwhile, for the sake of comparison, the FIV response of an elliptical cylinder with the same equivalent diameters is also presented. The results indicate that an increase in AoA enhances the vibration amplitude and expands the lock-in range for both the whisker model and the elliptical cylinder. The whisker model effectively suppresses vibration responses at θ=0∘ due to its unique three-dimensional wavy shape. However, when θ≥30∘, the wavy surface structure gradually loses its suppression ability, resulting in large-amplitude vibration responses similar to those of the elliptical cylinder. For θ = 30∘ and 45∘, the vibration responses of the whisker model and the elliptical cylinder undergo three vibration regimes, i.e., vortex-induced vibration, transition response, and turbulent-induced vibration, with the increasing Ur. However, at θ = 60∘ and 90∘, the vortex-shedding gradually controls the FIV response, and only the vortex-induced vibration is observed.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3