Heat Transfer Correlations for Smooth and Rough Airfoils

Author:

Samadani Sepehr1ORCID,Morency François1ORCID

Affiliation:

1. Thermo-Fluids for Transport Laboratory (TFT), Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Notre-Dame St W, Montréal, QC H3C 1K3, Canada

Abstract

Low-fidelity methods such as the Blade Element Momentum Theory frequently provide rotor aerodynamic performances. However, these methods must be coupled to databases or correlations to compute heat transfer. The literature lacks correlations to compute the average heat transfer around airfoil. The present study develops correlations for an average heat transfer over smooth and rough airfoil. The correlation coefficients were obtained from a CFD database using RANS equations and the Spalart–Allmaras turbulent model. This work studies the NACA 0009, NACA 0012, and NACA 0015 with and without the leading roughness representative of a small ice accretion. The numerical results are validated against lift and drag coefficients from the literature. The heat transfer at the stagnation point compares well with the experimental results. The database indicates a negligible dependency on airfoil thickness. The work presents two correlations from the database analysis: one for the smooth airfoils and one for the rough airfoils. For the zero lift coefficient, the average Nusselt number is maximum. This increases with Re0.636 for the smooth surface and with Re0.85 for the rough surface. As the lift increases, the average Nusselt is reduced by values proportional to the square of the lift coefficient for the smooth surface, while it is reduced by values proportional to Re and the square of the lift coefficient for the rough surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3