Abstract
We present large eddy simulations of a midlatitude open ocean front using a modified state-of-the-art computational fluid dynamics code. We investigate the energy and information fluxes at the submesoscale/small-scale range in the absence of any atmospheric forcing. We find submesoscale conditions (Ro∼1, Ri∼1) near the surface within baroclinic structures, related to partially imbalanced frontogenetic activity. Near the surface, the simulations show a significant scale coupling on scales larger than ∼103 (m). This is manifested as a strong direct energy cascade and intense mutual communication between scales, where the latter is evaluated using an estimator based on Mutual Information Theory. At scales smaller than ∼103 (m), the results show near-zero energy flux; however, at this scale range, the estimator of mutual communication still shows values corresponding with a significant level of communication between them. This fact motivates investigation into the nature of the self-organized turbulent motion at this scale range with weak energetic coupling but where communication between scales is still significant and to inquire into the existence of synchronization or functional relationships between scales, with emphasis on the eventual underlying nonlocal processes.
Funder
Interdisciplinary Center for Aquaculture Research
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献