Modeling of 3D Blood Flows with Physics-Informed Neural Networks: Comparison of Network Architectures

Author:

Moser Philipp1ORCID,Fenz Wolfgang1ORCID,Thumfart Stefan1ORCID,Ganitzer Isabell1ORCID,Giretzlehner Michael1ORCID

Affiliation:

1. Research Unit Medical Informatics, RISC Software GmbH, 4232 Hagenberg, Austria

Abstract

Machine learning-based modeling of physical systems has attracted significant interest in recent years. Based solely on the underlying physical equations and initial and boundary conditions, these new approaches allow to approximate, for example, the complex flow of blood in the case of fluid dynamics. Physics-informed neural networks offer certain advantages compared to conventional computational fluid dynamics methods as they avoid the need for discretized meshes and allow to readily solve inverse problems and integrate additional data into the algorithms. Today, the majority of published reports on learning-based flow modeling relies on fully-connected neural networks. However, many different network architectures are introduced into deep learning each year, each with specific benefits for certain applications. In this paper, we present the first comprehensive comparison of various state-of-the-art networks and evaluate their performance in terms of computational cost and accuracy relative to numerical references. We found that while fully-connected networks offer an attractive balance between training time and accuracy, more elaborate architectures (e.g., Deep Galerkin Method) generated superior results. Moreover, we observed high accuracy in simple cylindrical geometries, but slightly poorer estimates in complex aneurysms. This paper provides quantitative guidance for practitioners interested in complex flow modeling using physics-based deep learning.

Funder

Government of Upper Austria

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3