Effect of Schmidt Number on Forced Isotropic Turbulence with Passive Scalars

Author:

Orlandi Paolo1ORCID,Pirozzoli Sergio1ORCID

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Aerospaziale, Università La Sapienza, Via Eudossiana 16, I-00184 Roma, Italy

Abstract

Traditionally, Fourier spectra have been employed to gain a deeper understanding of turbulence flow structures. The investigation of isotropic forced turbulence with passive scalars offers a straightforward means to examine the disparities between velocity and passive scalar spectra. This flow configuration has been extensively studied in the past, encompassing a range of Reynolds and Schmidt numbers. In this present study, direct numerical simulations (DNS) of this flow are conducted at sufficiently high Reynolds numbers, enabling the formation of a wide inertial range. The primary focus of this investigation is to quantitatively assess the variations in scalar spectra with the Schmidt number (Sc). The spectra exhibit a transition from a k−5/3 scaling for low Sc to a k−4/3 scaling for high Sc. The emergence of the latter power law becomes evident at Sc = 2, with its width expanding as Sc increases. To gain further insights into the underlying flow structures, a statistical analysis is performed by evaluating quantities aligned with the principal axes of the strain field. The study reveals that enstrophy is primarily influenced by the vorticity aligned with the intermediate principal strain axis, while the scalar gradient variance is predominantly controlled by the compressive strain. To provide a clearer understanding of the differences between enstrophy and scalar gradient variance, joint probability density functions (PDFs) and visualizations of the budget terms for both quantities are presented. These visualizations serve to elucidate the distinctions between the two and offer insights into their respective behaviors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3