Conjugate Heat Transfer in Thermal Inkjet Printheads

Author:

Mallinson S. G.12ORCID,McBain G. D.1ORCID,Brown B. R.1

Affiliation:

1. Memjet, Macquarie Park, NSW 2113, Australia

2. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

The mass of individual droplets ejected from a thermal inkjet printhead increases with increasing local temperature near the ejector nozzles. The amount of ink deposited on the page and so the printed image density depends on the droplet mass. Thus, printhead temperature nonuniformity results in printed image density variations that can be unacceptable to the end users of the printed output. Such temperature variations arise from a combination of the ink fluid flow and the heat transfer in both the ink and the solid components in the printhead. Conjugate heat transfer (CHT) in thermal inkjet printheads is investigated here using validated numerical simulations. A typical thermal inkjet printhead is considered here for the first time, with cold ink drawn through the solid structural components by the ejector nozzle refill. The effect of the width of the feedhole above the printhead chip on the temperature field within the chip is analyzed. Validation of the simulation model required the derivation of novel analytical solutions for the relatively simple problems of fully developed forced convection in a differentially heated planar channel and conduction against convection in plug flow. The results from numerical simulations of these two problems are found to compare well with the newly derived analytical solutions. CHT in flow over a backward-facing step with a heated downstream wall was also simulated as part of the validation process, and good agreement was observed with earlier numerical studies. For the main part of the study, it was found that increasing the width of the feedhole reduces the gradients in temperature on the surface of the printhead chip, thus reducing temperature-related printing defects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3