Understanding Atmospheric Convection Using Large Eddy Simulation

Author:

Dogra Gaurav1,Dewan Anupam2ORCID,Sahany Sandeep3

Affiliation:

1. School of Interdisciplinary Research, IIT Delhi, New Delhi 110016, India

2. Department of Applied Mechanics, IIT Delhi, New Delhi 110016, India

3. Centre for Climate Research Singapore, Singapore 537054, Singapore

Abstract

Cloud formation is based on the fundamental principle of atmospheric convection, which involves the vertical transport of heat and moisture into an unstable environment. Convective transfer of moisture and heat in the form of turbulent fluxes over the Bay of Bengal (BoB) has not been explored much and is not resolved in global and regional climate models (GCMs and RCMs) due to the coarser grid resolutions used. Therefore, the present study is an attempt to understand the convection phenomenon over the BoB using a high-resolution cloud-resolving large eddy simulation. Due to the lack of observational data over the BoB, initial and boundary conditions were generated using reanalysis data. We found that the LES successfully captured the cloud formation and convection phenomenon. The turbulence in the convection was analyzed by using Reynolds averaging to obtain variances and covariances. The presence of turbulence over the region was observed. The cloud characteristics were verified by conditionally averaging the output fields. The present study paves a pathway to perform various simulations at different atmospheric conditions over the region in order to create a library of high-resolution simulations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3