Vapor Bubble Deformation and Collapse near Free Surface

Author:

Chen Yue1,Wang Qichao1,Xiong Hongbing1ORCID,Qian Lijuan2

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Vapor bubbles are widely concerned in many industrial applications. The deformation and collapse of a vapor bubble near a free surface after being heated and raised from the bottom wall are investigated in this paper. On the basis of smoothed particle hydrodynamics (SPH) and the van der Waals (VDW) equation of state, a numerical model of fluid dynamics and phase change was developed. The effects of fluid dynamics were considered, and the phase change of evaporation and condensation between liquid and vapor were discussed. Quantitative and qualitative comparisons between our numerical model and the experimental results were made. After verification, the numerical simulation of bubbles with the effects of the shear viscosity ηs and the heating distance L were taken into account. The regularity of the effect of the local Reynolds number (Re) and the Ohnesorge number (Oh) on the deformation of vapor bubbles is summarized through a further analysis of several cases, which can be summarized into four major patterns as follows: umbrella, semi-crescent, spheroid, and jet. The results show that the Re number has a great influence on the bubble deformation of near-wall bubbles. For Re > 1.5 × 102 and Oh < 3 × 10−4, the shape of the bubble is umbrella; for Re < 5 × 100 and Oh > 10−3, the bubble is spheroidal; and for 5 × 100 < Re < 1.5 × 102, 3 × 10−4 < Oh < 10−3, the bubble is semi-crescent. For liquid-surface bubbles, the Re number effect is small, and when Oh > 5 × 10−3, the shape of the bubble is jet all the time; there is no obvious difference in the bubble deformation, but the jet state is more obvious as the Re decreases. Finally, the dynamic and energy mechanisms behind each mode are discussed. The bubble diameter, bubble symmetry coefficient, and rising velocity were analyzed during their whole processes of bubble growth and collapse.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3