Abstract
Pressure waves, while traveling along pressurized pipes, collect precious information about possible faults (e.g., leaks and partial blockages). In fact, the characteristics of the pressure wave reflected by the fault are strongly related to it. To encourage the use of the transient test-based technologies (TTBTs) for partial blockage (PB) detection in pressurized pipe systems, it can be of interest to critically analyze the available experimental results and to point out the aspects that need to be investigated in more detail, since no review has been executed so far. Such a deficiency has two negative consequences. The first one is that TTBTs are still relegated to limbo by technicians. The second one is that not enough material is available for refining tools to extract all the information contained in the acquired pressure signals and then to pursue an effective PB detection. As main results of the executed analysis, the following issues can be counted: (i) the lack of tests carried out in large diameter and concrete pipes; (ii) the absence of tests carried out in complex pipe systems (e.g., looped networks); and (iii) the extreme need for considering real pipe systems. The fulfillment of the last issue will greatly contribute to the solutions of the other ones.
Funder
University of Perugia and MUR
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献