PIV Measurements of Open-Channel Turbulent Flow under Unconstrained Conditions

Author:

Arthur James K.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Bucknell University, Lewisburg, PA 17837, USA

Abstract

Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Reθ (ranging from 165 to 930), low aspect ratio AR (ranging from 1.1 to 1.5), and Froude number Fr (ranging from 0.1 to 0.8). The results show that the mean flow has an inner region with a logarithmic layer with a von Kármán constant of 0.40–0.41, and a log law constant ranging from 5.0 to 6.0. The friction velocity and coefficient of skin friction are predictable using the formulations of Fr and Reθ presented in this work. The outer region is also characterized by a dip location, which is predictable using an equation associated with Reθ. The higher-order turbulence statistics, on the other hand, show distinguishing traits, such as correlation coefficients ranging from −0.1 to 0.5. Overall, this work demonstrates that for the unconstrained conditions studied, friction evaluations associated with Reynolds shear stress and some notable turbulence modelling functions used in conventional open-channel flows are inapplicable.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3