An Interface-Fitted Fictitious Domain Finite Element Method for the Simulation of Neutrally Buoyant Particles in Plane Shear Flow

Author:

Liang Yi1ORCID,Wang Cheng1,Sun Pengtao2

Affiliation:

1. School of Mathematical Sciences, Tongji University, Shanghai 200092, China

2. Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Abstract

In this paper, an interface-fitted fictitious domain finite element method is developed for the simulation of fluid–rigid particle interaction problems in cases of rotated particles with small displacement, where an interface-fitted mesh is employed for the discrete scheme to capture the fluid–rigid particle interface accurately, thereby improving the solution accuracy near the interface. Moreover, a linearization and decoupling process is presented to release the constraint between velocities of fluid and rigid particles in the finite element space, and to make the developed numerical method easy to be implemented. Our numerical experiments are carried out using two different moving interface-fitted meshes; one is obtained by a rotational arbitrary Lagrangian–Eulerian (ALE) mapping, and the other one through a local smoothing process among interface-cut elements. A unified velocity is defined in the entire domain based on the fictitious domain method, making it easier to develop an interface-fitted mesh generation algorithm in a fixed domain. Both show that the proposed method has a good performance in accuracy for simulating a neutrally buoyant particle in plane shear flow. This approach can be easily extended to fluid–structure interaction problems involving fluids in different states and structures in different shapes with large displacements or deformations.

Funder

National Natural Science Foundation of China

a grant from the Simons Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3