Scalable Simulation of Pressure Gradient-Driven Transport of Rarefied Gases in Complex Permeable Media Using Lattice Boltzmann Method

Author:

Rustamov Nijat,Douglas Craig C.,Aryana Saman A.ORCID

Abstract

Accurate representations of slip and transitional flow regimes present a challenge in the simulation of rarefied gas flow in confined systems with complex geometries. In these regimes, continuum-based formulations may not capture the physics correctly. This work considers a regularized multi-relaxation time lattice Boltzmann (LB) method with mixed Maxwellian diffusive and halfway bounce-back wall boundary treatments to capture flow at high Kn. The simulation results are validated against atomistic simulation results from the literature. We examine the convergence behavior of LB for confined systems as a function of inlet and outlet treatments, complexity of the geometry, and magnitude of pressure gradient and show that convergence is sensitive to all three. The inlet and outlet boundary treatments considered in this work include periodic, pressure, and a generalized periodic boundary condition. Compared to periodic and pressure treatments, simulations of complex domains using a generalized boundary treatment conserve mass but require more iterations to converge. Convergence behavior in complex domains improves at higher magnitudes of pressure gradient across the computational domain, and lowering the porosity deteriorates the convergence behavior for complex domains.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3