Automatic Assessments of Parkinsonian Gait with Wearable Sensors for Human Assistive Systems

Author:

Han Yi12,Liu Xiangzhi1,Zhang Ning3,Zhang Xiufeng3,Zhang Bin4,Wang Shuoyu2,Liu Tao1ORCID,Yi Jingang5

Affiliation:

1. The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

2. Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, Kochi 782-8502, Japan

3. The National Research Center for Rehabilitation Technical Aids, Beijing 102676, China

4. The College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

5. Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA

Abstract

The rehabilitation evaluation of Parkinson’s disease has always been the research focus of human assistive systems. It is a research hotspot to objectively and accurately evaluate the gait condition of Parkinson’s disease patients, thereby adjusting the actuators of the human–machine system and making rehabilitation robots better adapt to the recovery process of patients. The rehabilitation evaluation of Parkinson’s disease has always been the research focus of rehabilitation robots. It is a research hotspot to be able to objectively and accurately evaluate the recovery of Parkinson’s disease patients, thereby adjusting the driving module of the human–machine collaboration system in real time, so that rehabilitation robots can better adapt to the recovery process of Parkinson’s disease. The gait task in the Unified Parkinson’s Disease Rating Scale (UPDRS) is a widely accepted standard for assessing the gait impairments of patients with Parkinson’s disease (PD). However, the assessments conducted by neurologists are always subjective and inaccurate, and the results are determined by the neurologists’ observation and clinical experience. Thus, in this study, we proposed a novel machine learning-based method of automatically assessing the gait task in UPDRS with wearable sensors as a more convenient and objective alternative means for PD gait assessment. In the design, twelve gait features, including three spatial–temporal features and nine kinematic features, were extracted and calculated from two shank-mounted IMUs. A novel nonlinear model is developed for calculating the score of gait task from the gait features. Twenty-five PD patients and twenty-eight healthy subjects were recruited for validating the proposed method. For comparison purpose, three traditional models, which have been used in previous studies, were also tested by the same dataset. In terms of percentages of participants, 84.9%, 73.6%, 73.6%, and 66.0% of the participants were accurately assigned into the true level with the proposed nonlinear model, the support vector machine model, the naive Bayes model, and the linear regression model, respectively, which indicates that the proposed method has a good performance on calculating the score of the UPDRS gait task and conformance with the rating done by neurologists.

Funder

NSFC

Zhejiang Provincial Natural Science Foundation of China

Key Research and Development Program of Zhejiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3