Peer-to-Peer User Identity Verification Time Optimization in IoT Blockchain Network

Author:

Kairaldeen Ammar Riadh1ORCID,Abdullah Nor Fadzilah1ORCID,Abu-Samah Asma1ORCID,Nordin Rosdiadee1ORCID

Affiliation:

1. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

Blockchain introduces challenges related to the reliability of user identity and identity management systems; this includes detecting unfalsified identities linked to IoT applications. This study focuses on optimizing user identity verification time by employing an efficient encryption algorithm for the user signature in a peer-to-peer decentralized IoT blockchain network. To achieve this, a user signature-based identity management framework is examined by using various encryption techniques and contrasting various hash functions built on top of the Modified Merkle Hash Tree (MMHT) data structure algorithm. The paper presents the execution of varying dataset sizes based on transactions between nodes to test the scalability of the proposed design for secure blockchain communication. The results show that the MMHT data structure algorithm using SHA3 and AES-128 encryption algorithm gives the lowest execution time, offering a minimum of 36% gain in time optimization compared to other algorithms. This work shows that using the AES-128 encryption algorithm with the MMHT algorithm and SHA3 hash function not only identifies malicious codes but also improves user integrity check performance in a blockchain network, while ensuring network scalability. Therefore, this study presents the performance evaluation of a blockchain network considering its distinct types, properties, components, and algorithms’ taxonomy.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3