An Hybrid Approach for Urban Traffic Prediction and Control in Smart Cities

Author:

Culita JanettaORCID,Caramihai Simona IulianaORCID,Dumitrache Ioan,Moisescu Mihnea AlexandruORCID,Sacala Ioan StefanORCID

Abstract

Smart cities are complex, socio-technological systems built as a strongly connected System of Systems, whose functioning is driven by human–machine interactions and whose ultimate goals are the well-being of their inhabitants. Consequently, controlling a smart city is an objective that may be achieved by using a specific framework that integrates algorithmic control, intelligent control, cognitive control and especially human reasoning and communication. Among the many functions of a smart city, intelligent transportation is one of the most important, with specific restrictions and a high level of dynamics. This paper focuses on the application of a neuro-inspired control framework for urban traffic as a component of a complex system. It is a proof of concept for a systemic integrative approach to the global problem of smart city management and integrates a previously designed urban traffic control architecture (for the city of Bucharest) with the actual purpose of ensuring its proactivity by means of traffic flow prediction. Analyses of requirements and methods for prediction are performed in order to determine the best way for fulfilling the perception function of the architecture with respect to the traffic control problem definition. A parametric method and an AI-based method are discussed in order to predict the traffic flow, both in the short and long term, based on real data. A brief comparative analysis of the prediction performances is also presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Lane Reversal in Traffic Management;International Journal of Advanced Research in Science, Communication and Technology;2024-05-04

2. Smart City Traffic Control System: A Literature Review;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. Achieving Sustainable Smart Cities through Geospatial Data-Driven Approaches;Sustainability;2024-01-11

4. A survey on traffic flow prediction and classification;Intelligent Systems with Applications;2023-11

5. Urban traffic forecasting using attention based model with GCN and GRU;Multimedia Tools and Applications;2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3