3Cs: Unleashing Capsule Networks for Robust COVID-19 Detection Using CT Images

Author:

Alaufi Rawan1ORCID,Abukhodair Felwa1ORCID,Kalkatawi Manal1ORCID

Affiliation:

1. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The COVID-19 pandemic has spread worldwide for over two years. It was considered a significant threat to global health due to its transmissibility and high pathogenicity. The standard test for COVID-19, namely, reverse transcription polymerase chain reaction (RT–PCR), is somehow inaccurate and might have a high false-negative rate (FNR). As a result, an infected person with a negative test result may unknowingly continue to spread the virus, especially if they are infected with an undiscovered COVID-19 strain. Thus, a more accurate diagnostic technique is required. In this study, we propose 3Cs, which is a capsule neural network (CapsNet) used to classify computed tomography (CT) images as novel coronavirus pneumonia (NCP), common pneumonia (CP), or normal lungs. Using 6123 CT images of healthy patients’ lungs and those of patients with CP and NCP, the 3Cs method achieved an accuracy of around 98% and an FNR of about 2%, demonstrating CapNet’s ability to extract features from CT images that distinguish between healthy and infected lungs. This research confirmed that using CapsNet to detect COVID-19 from CT images results in a lower FNR compared to RT–PCR. Thus, it can be used in conjunction with RT–PCR to diagnose COVID-19 regardless of the variant.

Publisher

MDPI AG

Reference44 articles.

1. World Health Organization (2024, June 12). Coronavirus. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1.

2. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., and Neuman, B.W. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv.

3. World Health Organization (2024, June 12). Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance, 2 March 2020. Available online: https://iris.who.int/handle/10665/331329.

4. World Health Organization (2024, June 12). WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

5. World Health Organization (2024, June 12). COVID-19 Dashboard: Deaths. Available online: https://data.who.int/dashboards/covid19/deaths?n=c.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3