Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China

Author:

Wang Xiujie,Li DandanORCID,Yuan Ximin,Qi Xiling,Zhang Pengfei

Abstract

To understand the intricate runoff-sediment relationship in the middle Yellow River basin (MYRB), the Toudaoguai, Longmen, Tongguan and Huayuankou sites in the MYRB were selected to analyze the deterministic equilibrium and uncertainty relations of runoff-sediment based on 55-year hydrological data at multi-time scales. The Johansen test and wavelet neural network were used to verify the cointegration relationship among hydrological series. Runoff-sediment uncertain statistical relations and dynamics in the MYRB were also analyzed based on rating curves and hysteresis loops. The results showed that the logarithmic sequences of sediment load (SL), runoff and suspended sediment concentration (SSC) conformed to a linear cointegration relationship at the Toudaoguai station or in spring, winter or under small flow at other stations, but a nonlinear cointegration relationship was observed in other cases at other stations. Regarding runoff-sediment uncertain relationships, the rating curves, and hysteresis loops differed in stations (Toudaoguai and the other stations), as well as discharge (threshold: 1000 m3/s), season (ice-flood and rainy season) and saturation of flow at flood and monthly scales. At the annual scale, phased and unsynchronized characteristics of runoff and sediment load were evident with a decreasing trend. This study on the runoff-sediment relationship can rationally provide a theoretical basis for the management and development of the Yellow River and other similar rivers with sufficient sediment, especially for areas with serious soil erosion.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3